Onder Moving on a Floor with friction

A wooden crate, mass 6.00 kg , is being pushed by a force of 36.0 N magnitude as shown below, on a floor with friction coefficient $\mu_{k}=0.25$.
The force acts horizontally as indicated, and the crate is already moving. Find the crate's acceleration.

$$
\mu_{k}=0.25
$$

Find the crate's acceleration

$$
\begin{aligned}
m_{\text {crate }} & =6.00 \mathrm{~kg} \\
\vec{F} & =36.0 \mathrm{~N}
\end{aligned}
$$

Kinetic friction coefficient

$$
\mu_{k}=0.25
$$

Free Body Diagram (FBD)

$$
\begin{aligned}
m_{\text {crate }} & =6.00 \mathrm{~kg} \\
\vec{F} & =36.0 \mathrm{~N}
\end{aligned}
$$

Free Body Diagram (FBD)

$$
\begin{aligned}
m_{\text {crate }} & =6.00 \mathrm{~kg} \\
\vec{F} & =36.0 \mathrm{~N}
\end{aligned}
$$

Newton's $2^{\text {nd }}$ law

$$
\sum \vec{F}=m \vec{a}
$$

$$
\begin{aligned}
m_{\text {crate }} & =6.00 \mathrm{~kg} \\
\vec{F} & =36.0 \mathrm{~N}
\end{aligned}
$$

Newton's $2^{\text {nd }}$ Law
Y axis
$\sum F_{y}=0$

Solve for Normal Force

$$
\begin{aligned}
\sum F_{y} & =0 \\
F_{N}-F_{g} & =0 \\
F_{N} & =F_{g} \\
F_{N} & =(6.00) \mathrm{kg} * 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
F_{N} & =58.9 \mathrm{~N}
\end{aligned}
$$

Find the kinetic friction force

$$
\begin{aligned}
f_{k} & =\mu_{k} F_{N} \\
f_{k} & =(0.25) \cdot(58.9 \mathrm{~N}) \\
f_{k} & =14.7 \mathrm{~N}
\end{aligned}
$$

Newton's $2^{\text {nd }}$ Law
 X axis

$\sum F_{x}=m a_{x}$

Newton's $2^{\text {nd }}$ Law X axis

$\sum F_{x}=m a_{x}$
Solve for acceleration

