Projectile Motion with Horizontal Launch Find how far the object goes

A red car is driving at $10.0 \mathrm{~m} / \mathrm{s}$ directly to a cliff that is 20.0 m high，as shown in the picture．The car cannot stop and falls over the cliff．
1．Calculate how long it takes for the car to touch ground．
2．Calculate the maximum horizontal distance the car will go，
3．Calculate the final velocity of the car right before hitting ground．

Projectile Motion with Horizontal Launch

Find how far the object goes

Basic steps to solve this problem
1）Read the problem
2）Draw a diagram
3）Write down info
4）Choose equation
5）Solve for the unknowns
6）Check your answers

Projectile Motion with Horizontal Launch

 Find how far the object goesA red car is driving at $10.0 \mathrm{~m} / \mathrm{s}$ directly to a cliff that is 20.0 m high, as shown in the picture. The car cannot stop and falls over the cliff.

1. Calculate how long it takes for the car to touch ground.
2. Calculate the maximum horizontal distance the car will go,
3. Calculate the final velocity of the car right before hitting ground.

Projectile Motion with Horizontal Launch

 Find how far the object goesNever mix x and y variables Only Δt can be used with both variables

Raul Barren ＠PhysicsSensei

Physics
os 先
Sense
Projectile Motion with Horizontal Launch Find how far the object goes

Projectile Motion with Horizontal Launch

 Find how far the object goesCalculate how long it takes for the car to touch ground

$$
\begin{aligned}
& y_{f}=y_{i}+v_{y_{i}} \Delta t+\frac{1}{2} a_{y} \cdot \Delta t^{2} \\
& y_{f}=y_{i}+v / y_{i} \Delta t+\frac{1}{2} a_{y} \Delta t^{2} \\
& 0=20.0 \mathrm{~m}-\frac{1}{2}\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \Delta t^{2} \\
& \Delta t^{2}=\frac{20.0 \mathrm{~m}}{4.905 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \\
& \Delta t=\sqrt{\frac{20.0 \mathrm{~m}}{4.905 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}}
\end{aligned}
$$

Solve for Δt
Using the values from the y axis

$$
\Delta t=2.02 \mathrm{~s}
$$

Projectile Motion with Horizontal Launch

 Find how far the object goes
Calculate the maximum horizontal distance the car will go

Solve for x_{f}

$$
\begin{aligned}
& x_{f}=x_{i}+v_{x} \cdot \Delta t \\
& x_{f}=x_{i}^{0}+v_{x} \cdot \Delta t
\end{aligned}
$$

Using the value of Δt

$$
x_{f}=\left(10.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(2.02 \mathrm{~s})
$$

$$
x_{f}=20.2 \mathrm{~m}
$$

Projectile Motion with Horizontal Launch

 Find how far the object goesCalculate the final velocity of the car right before hitting ground

Solve for $v_{y_{f}}$
Using the values from the y axis

$$
\begin{aligned}
& v_{y_{f}}=v_{y_{i}}+a_{y} \cdot \Delta t \\
& v_{y_{f}}=v_{y_{i}}^{0}+a_{y} \cdot \Delta t \\
& v_{y_{f}}=a_{y} \cdot \Delta t \\
& v_{y_{f}}=\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2.02 \mathrm{~s}) \\
& v_{y_{f}}=-19.8 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Projectile Motion with Horizontal Launch Find how far the object goes

Calculate the final velocity of the car right before hitting ground

$$
v_{f}=\sqrt{v_{x}^{2}+v_{y_{f}}^{2}}
$$

Solve for v_{f}
Using the values from the x and y axis

$$
v_{f}=\sqrt{\left(0.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\left(-19.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}
$$

$$
v_{f}=22.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Projectile Motion with Horizontal Launch Find how far the object goes

Calculate the final velocity of the car right before hitting ground

$$
\theta=\tan ^{-1}\left(\frac{v_{y_{f}}}{v_{x}}\right)
$$

Solve for θ
Using the values from the x and y axis

$$
\theta=\tan ^{-1}\left(\frac{-19.8 \mathrm{~m} / \mathrm{s}}{10.0 \mathrm{~m} / \mathrm{s}}\right)
$$

$$
\theta=-63.2^{\circ}
$$

Now it's your turn

Projectile Motion with Horizontal Launch Find how far the object goes

A red car is driving at $12.0 \mathrm{~m} / \mathrm{s}$ directly to a cliff that is 23.0 m high，as shown in the picture．The car cannot stop and falls over the cliff．
1．Calculate how long it takes for the car to touch ground．
2．Calculate the maximum horizontal distance the car will go，
3．Calculate the final velocity of the car right before hitting ground．

Take your time

Try without using your notes
Check your notes when you get stuck
Answers are next
Good Luck!!!!!!

Projectile Motion with Horizontal Launch
Find how far the object goes

Calculate how long it takes for the car to touch ground

$$
\begin{aligned}
& y_{f}=y_{i}+v_{y_{i}} \Delta t+\frac{1}{2} a_{y} \cdot \Delta t^{2} \\
& y_{f}=y_{i}+v_{y_{i}}^{0} \Delta t+\frac{1}{2} a_{y} \Delta t^{2} \\
& 0=23.0 \mathrm{~m}-\frac{1}{2}\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \Delta t^{2} \\
& \Delta t^{2}=\frac{23.0 \mathrm{~m}}{4.905 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \\
& \Delta t=\sqrt{\frac{23.0 \mathrm{~m}}{4.955 \frac{m}{s^{2}}}} \\
& \Delta t=2.16 \mathrm{~s}
\end{aligned}
$$

Projectile Motion with Horizontal Launch

 Find how far the object goes
Calculate the maximum horizontal distance the car will go

$$
\begin{aligned}
& x_{f}=x_{i}+v_{x} \cdot \Delta t \\
& x_{f}=x_{i}^{0}+v_{x} \cdot \Delta t
\end{aligned}
$$

Solve for x_{f}
Using the value of Δt

$$
\begin{aligned}
& x_{f}=\left(12.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(2.16 \mathrm{~s}) \\
& x_{f}=25.9 \mathrm{~m}
\end{aligned}
$$

Projectile Motion with Horizontal Launch

 Find how far the object goesCalculate the final velocity of the car right before hitting ground

$$
\begin{aligned}
& v_{y_{f}}=v_{y_{i}}+a_{y} \cdot \Delta t \\
& v_{y_{f}}=v_{y_{i}}^{0}+a_{y} \cdot \Delta t \\
& v_{y_{f}}=a_{y} \cdot \Delta t \\
& v_{y_{f}}=\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2.165) \\
& v_{y}=-21.2 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Projectile Motion with Horizontal Launch Find how far the object goes

Calculate the final velocity of the car right before hitting ground

$$
v_{f}=\sqrt{v_{x}^{2}+v_{y_{f}}^{2}}
$$

Solve for v_{f}
Using the values from the x and y axis

$$
\begin{aligned}
& v_{f}=\sqrt{\left(12.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\left(-21.2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}} \\
& v_{f}=24.4 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Projectile Motion with Horizontal Launch Find how far the object goes

Calculate the final velocity of the car right before hitting ground

$$
\theta=\tan ^{-1}\left(\frac{v_{y_{f}}}{v_{x}}\right)
$$

Solve for θ
Using the values from the x and y axis

$$
\theta=\tan ^{-1}\left(\frac{-21.2 \frac{\mathrm{~m}}{\mathrm{~s}}}{12.0 \frac{\mathrm{~m}}{\mathrm{~s}}}\right)
$$

$$
\theta=-60.5
$$

Projectile Motion with Horizontal Launch
 Find how far the object goes

If you liked this simple explanation, and you want to know how to get better grades in physics using less study time, you'll love my FREE eBook

