

A red car is driving at 10.0 m/s directly to a cliff that is 20.0 m high, as shown in the picture. The car cannot stop and falls over the cliff.

- Calculate how long it takes for the car to touch ground.
- 2. Calculate the maximum horizontal distance the car will go,
- 3. Calculate the final velocity of the car right before hitting ground.

Basic steps to solve this problem

- 1) Read the problem
- 2) Draw a diagram
- 3) Write down info
- 4) Choose equation
- 5) Solve for the unknowns
- 6) Check your answers

A red car is driving at 10.0 m/s directly to a cliff that is 20.0 m high, as shown in the picture. The car cannot stop and falls over the cliff.

- 1. Calculate how long it takes for the car to touch ground.
- 2. Calculate the maximum horizontal distance the car will go,
- 3. Calculate the final velocity of the car right before hitting ground.

Never mix x and y variables Only Δt can be used with both variables

Calculate how long it takes for the car to touch ground

Solve for Δt Using the values from the y axis

Calculate the maximum horizontal distance the car will go

Solve for x_f Using the value of Δt

$$X_{f} = X_{i} + V_{x} \cdot \Delta t$$

$$X_{f} = X_{i}^{\circ} + V_{x} \cdot \Delta t$$

$$X_{f} = \left(10.0 \, \frac{\text{M}}{\text{S}}\right) \left(2.025\right)$$

$$X_{f} = 20.2 \, \text{m}$$

Calculate the final velocity of the car right before hitting ground

Solve for v_{y_f} Using the values from the y axis

$$\nabla y_{f} = \nabla y_{i} + ay \cdot \Delta t$$

$$\nabla y_{f} = \sqrt{y_{i}} + ay \cdot \Delta t$$

$$\nabla y_{f} = ay \cdot \Delta t$$

$$\nabla y_{f} = \left(-9.81 \frac{m}{5^{2}}\right) (2.025)$$

$$\nabla y_{f} = -19.8 \frac{m}{5}$$

Calculate the final velocity of the car right before hitting ground

Solve for v_f Using the values from the x and y axis

$$\sqrt{f} = \sqrt{(10.0 \text{ Mg})^2 + (-19.8 \text{ Mg})^2}$$

Calculate the final velocity of the car right before hitting ground

Solve for θ Using the values from the x and y axis

Raul Barrea @PhysicsSensei

Now it's your turn

A red car is driving at 12.0 m/s directly to a cliff that is 23.0 m high, as shown in the picture. The car cannot stop and falls over the cliff.

- 1. Calculate how long it takes for the car to touch ground.
- 2. Calculate the maximum horizontal distance the car will go,
- 3. Calculate the final velocity of the car right before hitting ground.

Raul Barrea @PhysicsSensei

Take your time Try without using your notes Check your notes when you get stuck Answers are next Good Luck!!!!!!

Calculate how long it takes for the car to touch ground

Solve for Δt Using the values from the y axis

Calculate the maximum horizontal distance the car will go

Solve for x_f Using the value of Δt

$$X_{f} = X_{i} + V_{x} \cdot \Delta t$$

$$X_{f} = X_{i}^{\circ} + V_{x} \cdot \Delta t$$

$$X_{f} = (12.0 \text{ m})(2.16 \text{ s})$$

$$X_{f} = (25.9 \text{ m})$$

Calculate the final velocity of the car right before hitting ground

Solve for v_{y_f} Using the values from the y axis

$$\nabla y_{f} = \nabla y_{i} + \alpha y \cdot \Delta t$$

$$\nabla y_{f} = \sqrt{y_{i}} + \alpha y \cdot \Delta t$$

$$\nabla y_{f} = \alpha y \cdot \Delta t$$

$$\nabla y_{f} = \left(-9.81 \frac{M}{5^{2}}\right) \left(2.165\right)$$

$$\nabla y_{f} = -21.2 \frac{M}{5}$$

Calculate the final velocity of the car right before hitting ground

Solve for v_f Using the values from the x and y axis

Calculate the final velocity of the car right before hitting ground

Solve for θ Using the values from the x and y axis

$$\theta = \frac{1}{12.0 \frac{\text{W}}{\text{S}}}$$

If you liked this simple explanation, and you want to know how to get better grades in physics using less study time, you'll love my FREE eBook

Go to www.PhysicsSensei.com/eBooks/howtoeBooks/ and grab your free copy today.

