Object in Free Fall with initial Velocity

Drop a tennis ball from the top of a tower

You climb to the top of a tower, 70 m above the ground. You drop a tennis ball with initial velocit
$v_{i}=10.0 \frac{\mathrm{~m}}{\mathrm{~s}}$, from the top of the tower.

1. Calculate how far the ball has fallen after 1.0 and 2.00 s ,
2. Calculate its velocity at each of these times.
3. Calculate how long it takes for the ball to hit ground.

4. Calculate the final velocity of the ball right before hitting ground. Drop a tennis ball from the top of a tower

Object in Free Fall with initial Velocity

 Drop a tennis ball from the top of a tower
Equations

$$
\begin{aligned}
& y_{f}=y_{i}+v_{i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \\
& v_{f}=v_{i}+a \cdot t \\
& v_{f}^{2}=v_{i}^{2}+2 \cdot a \cdot \Delta y
\end{aligned}
$$

Object in Free Fall with initial Velocity

 Drop a tennis ball from the top of a towerCalculate how far the ball has fallen after 1.00s

$$
\begin{aligned}
& y_{f}=y_{i}+v_{i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \\
& y_{f}=70.0 \mathrm{~m}-10.0 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot(1.00 \mathrm{~s})+\frac{1}{2} \cdot\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(1.00 \mathrm{~s})^{2} \\
& y_{f}=70.0 \mathrm{~m}-10.0 \mathrm{~m}-4.905 \mathrm{~m}
\end{aligned}
$$

Object in Free Fall with initial Velocity Drop a tennis ball from the top of a tower

Calculate its velocity at 1.00 s

$$
\begin{aligned}
& v_{f}=v_{i}+a \cdot t \\
& v_{f}=-10.0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(1.00 \mathrm{~s}) \\
& v_{f}=-10.0 \frac{\mathrm{~m}}{\mathrm{~s}}-9.81 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Object in Free Fall with initial Velocity Drop a tennis ball from the top of a tower

Calculate how far the ball has fallen after 2.00s

$$
\begin{aligned}
& y_{f}=y_{i}+v_{i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \\
& y_{f}=70.0 \mathrm{~m}-10.0 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot(2.00 \mathrm{~s})+\frac{1}{2} \cdot\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(2.00 \mathrm{~s})^{2} \\
& y_{f}=70.0 m-20.0 m-19.62 m
\end{aligned}
$$

Object in Free Fall with initial Velocity Drop a tennis ball from the top of a tower

Calculate its velocity at 2.00 s

$$
\begin{aligned}
& v_{f}=v_{i}+a \cdot t \\
& v_{f}=-10.0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(2.00 \mathrm{~s})
\end{aligned}
$$

Object in Free Fall with initial Velocity Drop a tennis ball from the top of a tower

Calculate how long it takes for the ball to hit ground

$$
\begin{aligned}
y_{f} & =y_{i}+v_{i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \\
0 & =70.0 \mathrm{~m}-10.0 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot t+\frac{1}{2} \cdot\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot t^{2} \\
t & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
t_{1}=2.89 \mathrm{~s} & t_{2}=-4.93 \mathrm{~s}
\end{aligned}
$$

Object in Free Fall with initial Velocity

 Drop a tennis ball from the top of a towerCalculate the final velocity of the ball right before hitting ground

$$
\begin{aligned}
v_{f} & =v_{i}+a \cdot t \\
v_{f} & =-10.0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(2.89 \mathrm{~s})
\end{aligned}
$$

If you liked this simple explanation, and you want to know how to get better grades in physics using less study time, you'll love my FREE eBook

Go to

www.PhysicsSensei.com/eBooks/howtoeBooks/ and grab your free copy today.

