Object in Free Fall with initial Velocity Throw a tennis ball from the top of a tower

You climb to the top of a tower, 70.0 m above the ground. You throw a tennis ball with initial velocity
$v_{i}=+10.0 \frac{\mathrm{~m}}{\mathrm{~s}}$, from the top of the tower.

1. Calculate the maximum height the ball can go,
2. Calculate how long it takes to reach that height,
3. Calculate how long it takes for the ball to hit ground.
4. Calculate the final velocity of the ball right before hitting ground.

Object in Free Fall with initial Velocity

 Throw a tennis ball from the top of a towerBasic steps to solve this problem

1) Read the problem
2) Draw a diagram
3) Write down info
4) Choose equation
5) Solve for the unknowns
6) Check your answers

Object in Free Fall with initial Velocity Throw a tennis ball from the top of a tower

You climb to the top of a tower, 70.0 m above the ground. You throw a tennis ball with initial velocity

Object in Free Fall with initial Velocity Throw a tennis ball from the top of a tower

Equations

$$
a=-g=-9.81 \frac{m}{s^{2}}
$$

$$
\left\{y_{f}=?\right.
$$

$$
\begin{aligned}
& y_{f}=y_{i}+v_{i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \\
& v_{f}=v_{i}+a \cdot t \\
& v_{f}^{2}=v_{i}^{2}+2 \cdot a \cdot \Delta y
\end{aligned}
$$

$$
\mathrm{t}=0.0 \mathrm{~s}\left\{\begin{array}{l}
y_{i}=70.0 \mathrm{~m} \\
v_{i}=10.0 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
y_{f}=0.0 \mathrm{~m} \\
v_{f}=?
\end{array}\right.
$$

Object in Free Fall with initial Velocity

 Throw a tennis ball from the top of a towerCalculate the maximum height the ball can go

$$
\begin{aligned}
v_{f}{ }^{2} & =v_{i}^{2}+2 \cdot a \cdot \Delta y \\
0 & =\left(10.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2 \cdot\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot \Delta y \\
\Delta y & =\frac{\left(10.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)} \\
\Delta y & =5.10 \mathrm{~m} \\
y_{f} & =70.0 \mathrm{~m}+5.10 \mathrm{~m} \\
y_{f} & =75.1 \mathrm{~m}
\end{aligned}
$$

Object in Free Fall with initial Velocity

 Throw a tennis ball from the top of a tower
Calculate how long it takes to reach that height

$$
\begin{aligned}
v_{f} & =v_{i}+a \cdot t \\
0 & =10.0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot t
\end{aligned}
$$

$$
t=\frac{10.0 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}
$$

$$
t=1.02 \mathrm{~s}
$$

Object in Free Fall with initial Velocity

 Throw a tennis ball from the top of a towerCalculate how long it takes for the ball to hi

$$
\begin{aligned}
y_{f} & =y_{i}+v_{i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2} \\
0 & =70.0 \mathrm{~m}+10.0 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot t+\frac{1}{2} \cdot\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot t^{2}
\end{aligned}
$$

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Object in Free Fall with initial Velocity Throw a tennis ball from the top of a tower

Calculate the final velocity of the ball right before hitting ground

$$
\begin{aligned}
v_{f} & =v_{i}+a \cdot t \\
v_{f} & =10.0 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(4.93 \mathrm{~s})
\end{aligned}
$$

Raul Barrea

@PhysicsSensei
Physics
Qob 先
Sensei

If you liked this simple explanation, and you want to know how to get better grades in physics using less study time, you'll love my FREE eBook

Go to
www.PhysicsSensei.com/eBooks/howtoeBooks/ and grab your free copy today.

