πŸ”’ Master the Move β€” Circuit Equivalents (Thevenin & Norton)

Preview below. Unlock the full annotated breakdown, common traps, and the exam-speed variant at Black Belt.

πŸ₯‹ The Move

Collapse any linear two-terminal network to Thevenin \((V_{\text{th}},R_{\text{th}})\) or Norton \((I_{\text{N}},R_{\text{N}})\). Compute one; convert via \(I_{\text{N}}=V_{\text{th}}/R_{\text{th}}\) and \(R_{\text{N}}=R_{\text{th}}\).


πŸ“˜ Canonical Problem

Seen from terminals \(a\!-\!b\), find the Thevenin and Norton equivalents of an arbitrary linear network with independent sources and resistors.

  • Given: Circuit at terminals \(a\!-\!b\)
  • Find: \(V_{\text{th}},R_{\text{th}},I_{\text{N}}\)
  • Assume: linear, time-invariant resistive network; no dependent sources unless stated.
Checklist (no figure):

  • \(V_{\text{th}}\): open-circuit the load, solve for \(V_{ab}\).
  • \(R_{\text{th}}\): kill independent sources (voltage β†’ short, current β†’ open), look into \(a\!-\!b\).
  • \(I_{\text{N}}\): short \(a\!-\!b\) and solve short-circuit current; or compute \(V_{\text{th}}/R_{\text{th}}\).

πŸ”Ž Setup (Preview)

  1. Open-circuit solve. Remove the load, find \(V_{ab}=V_{\text{th}}\).
  2. Deactivate & look-in. Replace sources: \(V\)β†’short, \(I\)β†’open; combine resistors to get \(R_{\text{th}}\).

Full step-throughs and speed conversions at Black Belt.

πŸ”’ Download (Black Belt+)