π₯ The Move
Collapse any linear two-terminal network to Thevenin \((V_{\text{th}},R_{\text{th}})\) or Norton \((I_{\text{N}},R_{\text{N}})\). Compute one; convert via \(I_{\text{N}}=V_{\text{th}}/R_{\text{th}}\) and \(R_{\text{N}}=R_{\text{th}}\).
π Canonical Problem
Seen from terminals \(a\!-\!b\), find the Thevenin and Norton equivalents of an arbitrary linear network with independent sources and resistors.
- Given: Circuit at terminals \(a\!-\!b\)
- Find: \(V_{\text{th}},R_{\text{th}},I_{\text{N}}\)
- Assume: linear, time-invariant resistive network; no dependent sources unless stated.
Checklist (no figure):
- \(V_{\text{th}}\): open-circuit the load, solve for \(V_{ab}\).
- \(R_{\text{th}}\): kill independent sources (voltage β short, current β open), look into \(a\!-\!b\).
- \(I_{\text{N}}\): short \(a\!-\!b\) and solve short-circuit current; or compute \(V_{\text{th}}/R_{\text{th}}\).
π Setup (Preview)
- Open-circuit solve. Remove the load, find \(V_{ab}=V_{\text{th}}\).
- Deactivate & look-in. Replace sources: \(V\)βshort, \(I\)βopen; combine resistors to get \(R_{\text{th}}\).
Full step-throughs and speed conversions at Black Belt.